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We have studied the extremal areas and cyclotron effective masses in gold using the

de Haas—van Alphen effect.

The experimental data have been inverted to obtain the Fermi
radius and velocity at any point of the Fermi surface.

The inversion techniques are described

and some results on other quantities of experimental interest are also presented.

I. INTRODUCTION

The de Haas—van Alphen (dHvA) effect, as one
of the most powerful tools in the study of the Fermi
surface of metals, has been extensively used. 1
The main emphasis, however, has been on the
frequencies F; of the oscillations which are direct-
ly related to the extremal cross-sectional areas
A, of the surface by the relation 2

F;=(rc/2me)A,; (1a)

where i denotes the ith cross-sectional area. Much
less effort has been expended to date on studying
the cyclotron effective masses m;, where

my =5— —— . (1b)

The cyclotron effective mass follows from studying
the temperature dependence of the amplitude of the
dHvVA oscillations. Actually m™* is measured more
directly by means of the Azbel-Kaner microwave
cyclotron resonance experiments. We argue, how-
ever, that the dHvA method is at least as effective
for the following reasons: (a) The accuracy ob-
tainable in the dHVA and microwave methods is
about the same; (b) the microwave method re-
quires much purer samples with specially prepared
surfaces; (c) the phase of the oscillations is much
larger in the dHvA case and thus the measured
mass corresponds more closely to the extremal
orbit; and (d) for orbits of low symmetry, the
orbits of extremal m} and extremal A; may be
different, and thus our knowledge of the positions
of the orbit plane is less certain in the microwave
case.

Precise studies of the cyclotron effective mass
are particularly interesting at the present time.
Techniques for computing the shape of the Fermi
surface from band structure are now quite well
developed. However, for energies near the Fermi
energy, various many-body effects reduce the
value of the Fermi velocity 8E/ok from that calcu-
lated from the band structure. These velocity
shifts appear to lie outside the present range of
calculational competence. Thus, the cyclotron

|

effective mass, which involves an orbital average
of the Fermi velocity, is an interesting object of
study. Effective-mass data are fairly complete
in the other noble metals Ag and Cu 37" as well as
the near -noble metals Pt and Pd, *° whereas the
Au data are less satisfactory. '~ Thus, one
object of the present study was to obtain better
data on cyclotron masses in Au. Since spin-orbit
coupling effects are important in the heavy transi-
tion metals and thus larger g shifts are expected,
a better knowledge of the effective mass is also
useful for obtaining g factors from the harmonic
content of the dHvA effect. '3'!* The gold effective-
mass data obtained in the present study are pre-
sented in Sec. II of this paper.

The other object of the present study was to de-
velop and apply more powerful inversion schemes,
based on the Fourier-series representation, *~7
for converting dHvA areas A; (6, ¢) and cyclotron
effective masses mj (0, ¢) into Fermi radii (8, ¢)
and velocities V;(6, ¢). A scheme for obtaining
the pressure derivatives of the surface from the
pressure dependence of the dHVA areas has been
given previously, 18 and a similar one to get the
relaxation time at any point from the Dingle-Rob-
inson temperature of some dHvA orbits has also
been developed. '® In Sec. III we present the various
inversion procedures, while in Sec. IV we apply
these techniques to gold.

II. EXPERIMENTAL

The single crystal used in the present investiga-
tion had the shape of a cylinder, about 1 mm in
diameter and j in. long, and was obtained by using
zone-stretching and air-annealing techniques al-
ready described elsewhere, 22! Starting from a
wire of pure gold (99. 9999% pure and {5 in. in di-
ameter 2%), we obtained a sample with a residual
resistance ratio of 1600 which could be oriented
such that the magnetic field rotated approximately
in a (110) plane. The precise orientation of the
sample is specified by four angles which we have
defined previously 2 the values being given by
6,=33°, ¢;=41°, 6,=90°, ¢,=43°, @=90°, and
¥,=32. These values have an uncertainty of ap-
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proximately + 3°. The dHvA apparatus and the
various techniques which we have used for enhancing
specific frequencies have also been described in
detail. 2*'% For conditions such that B-H effects
may be neglected (well satisfied in this experiment)
the magnetization is given by'?

1/2 2 172
-y _e_ A{kBT(th)
Mi_M’(hc) [ THZ \ 0R2

~27 ckBTxm’:/neH )
X(sinh(Zﬂz cky Tm¥ /hieH)

in(27E: M)
><s1n( i +B;>COS( 2o , (2

where the vector direction of the magnetization is
given by
3A; 2 1 9A; ~

~ ~ 1
M; _H+X,. 90 9+Ai sing o ¢

Here, we have the Dingle-Robinson scattering tem-
perature T,, the orbital g factor g;, and the phase
B;. Using (2) we may also study the scattering
temperature T, from the field dependence of the
amplitude (once m* is known), the g factor from
the harmonic content ** [not included in Eq. (2)],
and 824, /ak? from the absolute amplitude. 2 The
cyclotron effective mass follows from a plot of
In(M/H) vs T, where the slope is given by m™/
(6.806Hx10). The slope was in all cases de-
termined by least-squares fitting to no less than
five measurements of the dHvA amplitude in the
temperature range 0.9-1.7 K. The temperature
was determined from the vapor pressure of the

He bath surrounding the sample using a Texas
Instruments precision pressure gauge. 2’ Cooling
of the sample bath was accomplished with a second
pumped *He bath which was in thermal equilibrium
with the sample bath. Since the sample bath is
static, no pressure-drop corrections are neces-
sary. (The sample bath was connected to room
temperature via a 1-in. tube and thus no thermomo-
lecular-pressure-head corrections are necessary. )
The average error of the measurements is esti-
mated at less than 1%. Our investigation in a plane
near (110) allowed a determination of all five sym-
metry-point-centered orbits in a single run: [100]
and [111] bellies, neck, four-cornered rosette,

and dogs’-bone orbits in the nomenclature of Shoen-
berg.!? We denote these orbits as Byyy, By, N,

R, and D, respectively.

Our areas, as a function of the direction of & in
the experimental plane, are shown in Fig. 1. The
angular dependence was determined with high ac-
curacy using the field-rotation technique. The
absolute values of the frequencies are known with
less accuracy and the data of Fig. 1 were normal-
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FIG. 1. Angular variation of the dHvA areas (in a.u.)

in the experimental plane. Dots are experimental points;
the continuous curve is calculated in the R8 representa-
tion. The angular scale on the abscissa refers to experi~
mental units and is such that a change of 10 in the coordi-
nate corresponds to a change in angle of 10.37°, (Note the
different scales for Ag, Ag, Ap, and Ay.)

ized to agree with the absolute values reported by
Schirber and O’Sullivan 28 [after correcting for the
fact that the sample plane is slightly removed from
the (110) plane] since the latter were measured
with an NMR calibrated magnetic field. The
Schirber and O’Sullivan 28 data are in excellent
agreement with the less complete data of Jan and
Templeton. 2 In addition to the data of Fig. 1, we
have observed frequencies for the field near [211]
corresponding to extended belly orbits connected by
one, two, and three necks. An unsuccessful effort
was made to find the six-cornered rosette for the
field near [111].

The experimental cyclotron effective masses
are reported in Fig. 2. The accuracy of the data
was sharply dependent on the region; whereas in
some cases the values reported are well reproduc-
ible and probably highly accurate (error £ 1%), a
much larger error (>2%) is present for the By,
masses.

III. COMPUTATIONAL TECHNIQUES

The extremal areas and the related cyclotron
effective masses, as given by the dHvA effect,
must be inverted in order to get the radii and the
velocities at any point of the Fermi surface. For
closed sheets, powerful techniques have been de-
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FIG. 2. Angular variation of the effective masses (in

electron masses) in the experimental plane. Dots are
experimental points; encircled dots are the points chosen
for the fit of Table III. Continuous and dashed curves are
calculated in the R8 representation, with the coefficients
of Table III, without and with the density-of~states con-
straint, respectively. The angular scale on the abscissa
refers to experimental units and is such that a change of
10 in the coordinate corresponds to a change in angle of
10.37°.

veloped which have been discussed in detail else-
where. 3°~% For open sheets, a convenient way to
achieve the inversion is based on the Fourier-
series representation of the Fermi surface which
has already been used with success for the noble
metals by Roaf'® and by Halse'®; recently, in an
improved version, it has been shown to work well
even for more distorted surfaces, like the open
sheets in Pd and Pt. *%!" We now discuss the ana-
lytic and numerical techniques which will be used
to perform the inversions of the area and effective-
mass data using the Fourier-series representation.
We use the following implicit equation as our
representation of the Fermi surface:

Fk) = ZC;ieiﬁ 0, (3)

where the R’s are the position vectors of the real-
space Bravais lattice. F (k) must transform as the
identity representation and, furthermore, have in-
version symmetry. Since these vectors may be fac-
tored into sets or “stars” which are invariant under
the operations of the point group, we rewrite Eq.
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(3) as a summation over these stars:

&) =2;c;8,(k) , (4)
with
S,W= X TR, (5)
all R in
jth star

In Eqgs. (4) and (5), j indexes stars associated with
vectors of increasing length.

The inversion from areas to radii has already
been described in detail, " and we need only to re-
call the main points and to report some minor mod-
ifications. Let us assume we have some set of C;
of representation (4); a general orbit described
by an electron in the magnetic field H is defined by
the intersection of the Fermi surface with a plane
k-A= k,, where K is the electron coordinate in the
momentum space and %, is its component along H.
Writing

K(Ep) =k H+K, (6)
the area of the orbit is given by
A=L [T k2 (6) a6 (7

0
9 being the angle in the plane of the orbit of k, with
respect to some convenient reference axis. From
Eq. (7), using the law of differentiation of implicit
functions, one derives the following expressions
for other quantities of interest:

BA°
8
2 f s, @16 ®
2r
8A° Ih
= H-VF)de , (9)
ok, 0 kL'VF(

2 c 2r 2 - - - A > N
8°A [ (,k: )[H-VF)Z—(kL-VF)(H-VVF-H)
aku 0 kl-VF
+(8-9F) (A-9VF-k,)]de , (10

where we need expressions for VF and VVF which
are clearly given by

VF—zERCge LR, (11)

- -

VVF=-2RRCgze'F'® . (12)

R
The quantities calculated in Eq. (8) are of central
importance in our inversion schemes; as we shall
see they come in both the area and mass inversions;
they have also been used to invert the pressure-de-
pendence data for the Fermi surfaces of the noble
metals. '® Equation (9) is important in the discus-
sion of helicon and magnetoacoustic experiments, 3
where the phenomena of the Doppler-shifted cyclo-
tron resonance are encountered. The value of
8A/8k, at the limiting point (at which &, crosses
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the Fermi surface) gives the Gaussian curvature.
At the limiting point the numerator and denominator
in the integrand of Eq. (9) vanish and an asymptotic
expression is required. We have derived the fol-
lowing equation to handle this case:

c - - -~ ~ - -
oA =27| VF|((izs VVF-1n,) (3 VVF-n3)
akll lim

— (g VVF-73)2]2  (13)

where 7, and 7, are any two mutually perpendicular
unit vectors which are in turn perpendicular to the
surface normal ;. A suitable set of vectors is

given by
~ GF A Exﬁl A A oa
MERE T kg, 0 A (1)

Equation (10) appears in the expression for the
amplitude of the dHVA oscillations. ** The inte-
grals (7)-(10) are evaluated by means of the Simp-
son rule carried out by using the “return to sur-
face” and “stepping” routines discussed previous-
ly. !7 Here, we have improved the “return to sur-
face” procedure, by executing it in a quadratic ap-
proximation: We start from the second-order
Taylor expansion to relate the energy correspond-
ing to the trial starting vector K and the new one
kK=k+ok=(k, +0ok,) +k,:

Z; A; 34 2 1 2Af A
i aC, aA

2
"N AT 8C, oC,

2|

i

Ay
NiktAi
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F(k + 6K) = F(K) + VF- 6k, + 4 6k,- VVF- 6k,  (15)

and, since according to Eq. (4), F(E+ 8k)=0, we
return to the surface by replacing k with

- -

-R,-VF+[(k,- VF)? - 2F(K) k,- VUF-k, |2
k, VVF-K,

-

k'=E+EL

(16)
We have seen above how to study the geometrical
properties of the Fermi surface by starting from a
given set of {C}. The optimal coefficients are de-
termined through a variational procedure, which
minimizes the rms error,
1 i (45 -4,)?
TTE D et
i=1

at({c} = a

(17)
between a set of N experimental areas A; and the
corresponding A{ calculated with Eq. (7). We ex-
pand the calculated area in a Taylor series through
second order:

At{c+och =as{chH +2§‘é—? 6C;
J j

IE ZAC

*325¢, 5, °C19Cx - (18)

Inserting Eq. (18) in Eq. (17) and minimizing with
respect to { 6C} while again retaining only terms
through second order we obtain for the nth equation,

2c
;. 9%A¢
5 ———E—L

Cr t 2 A?  8C,0C, 0Cs

(aAf 82A¢ BAS 02%A¢

8C, 8C,8C, ' “3C, ac,,ac,)f’c"éc’zo’ (19)

where 3AS/9A has already been given in Eq. (8) and 824¢ /8C,;6C, is given by

A7 _ ( S; (k) S,(k)k,- VVF-k
S, (&) Sy(K) +5, (&) k,- vS,(K) +S,(K)k, vS, (k) - 21200 4 20
aC,aC, i 1 i E-VF dae . (20)
I
Retaining the first two terms in Eq. (19) corre- X, 42T, 6C, =0 (23)
7 ’
1

sponds to a linear least-squares fit, while inclusion
of the last two corresponds to quadratic accuracy;
for the remainder of this paper we will restrict

ourselves to a linear least-squares fit. We now
define the vector
2 Af -~ A; 3A]
Z—igg—i 5C. (21)
and matrix
251 9AY
7,2y 1, 241047 (22)

N A% 8C,; aC,

With these definitions and restrictions, Eq. (19)
reads

which is easily solved using matrix-inversion
techniques. We wish to perform our minimiza-
tion, however, with the constraint that the total
number of carriers is such that there is one elec-
tron in the first Brillouin zone as expected for the

case of Au. The volume V of the Fermi surface
is given by
vi{chH =[Ak,,{c} dr, . (24)

(The analogous expression in spherical coordinates
is given in Appendix D.) Let V, be one-half the
volume of the first zone. We want to minimize

Eq. (17) with the constraint V({C}) = V,, and this
yields
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5C, (25)

Xj+ZTj,GC‘+)« =0,
where A is a Lagrange multiplier, which is found

to be given by

- (V({C}) E(T")m Tn )/
. av 8V
MZM(TI)’"-"a—c,,a_q , (26)
ov [ aAlk,,{C}D
a—C_,'f——ac,—dk" . (27)

With these expressions we may calculate a new set
{C} which more accurately minimizes Eq. (17). It
is useful to have an expression for the predicted
rms error, that is, the error we would expect if
we use the new set of coefficients {C + 5C}. This
is easily shown to be

a{c+sch=a2({ch +12;x,6C; , (28)

and this expression is useful in deciding when to
stop the iteration procedure.

We now discuss the cyclotron effective-mass in-
version. Since } C;S; (k) does not, in general,
represent the band structure in the vicinity of
EF , VF will be different from the Fermi velocity
Vp= VE although Vv, being perpendicular to the
surface, will be parallel to VF. We shall, how-
ever, introduce a new set of coefficients {C } and
write the velocity in the following way, which satis-
fies the symmetry requirements:

=VE=-VF/2C}s,&) . (29)

Equation (29) may be derived by considering the
coefficients C,(E) of Eq. (4) as energy dependent.
The velocity then follows from considering the
surface at E +dE for which the expansion coefficients
are C;(E+dE) = C,(E) + C}(E) dE._ Solutions of Eq.
(4) for E+dE y1e1d values of k +dk and thus we can
compute the velocity V= dE/dk. Alternatively, we
could look for a unique set of coefficients which
fits simultaneously the area and cyclotron effective-
mass data; th1s more general inversion scheme,
in which both k,,. and V are derived from a single
function E(K), is discussed in Appendix A.

The cyclotron effective mass is given (in a.u. )
by

e
7 8E

c

m

(30)

By differentiating Eq. (7) with respect to E we have

2r
aAcf &2
= =—=— db
9E Jo Kk,-VE (3D

and, from Eq. (29),
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04° 5o BSLK) 4 (32)
9F k,-VF
Finally, from Eq. (8), we get
9A° ) 8AC
= —_— . 33
3E 7 T aC; (33)

Since 8A/aC, for a given orbit and S; (k) for a given
point may be considered known quantities from the
above discussion, a knowledge of the {C’} coeffi-
cients enables us to get, through Eqs. (29) and (33),
the velocity at any point and the cyclotron effective
mass for any orbit we wish; it will give us also

the density of states [see Eq. (45)]. The {C’} co-
efficients are obtained from the experir.:ents by
defining, in analogy with Eq. (17), a new function

A/ ()
9E oF
and by varying the {C’} until the best fit is obtained
to the set of M experimental masses m;. Again,
the minimization of D? can be carried out either
without any constraint, or imposing the condition
that the density of states N(E) [calculated using
Eqs. (43) and (44)] be equal to the value obtained
experimentally through specific-heat measure-
ments. 3 (We shall discuss in Sec. IV the meaning
of this procedure.)

Without the density-of-states constraint the
minimization of Eq. (34) leads to the equations

9A;

D*ch=4; B

(34)

84, A{ aA> 0%A]
;( aE) (aE oE ) 2EoC] O (33)

which, with the use of Eq. (33), becomes

84, \™! 04§ 8A; Y% 0AL 0AS
- —i kil Wtk % -
Z( aE) aC; Z,(aE) ac,ac‘c’ 0.
(36)
Defining the vector
Y;= Z'](3E> 5C. (37)
and the matrix
_s[84; \? 845 24
U”‘?( 3E ) 8C; aC, ’ (38)
we can rewrite Eq. (36) in the compact form
Y;+25,U; C =0 (39)

With the density-of-states constraint on the coef-
ficients the situation is completely analogous to
that considered in Eqs. (25) and (26) and Eq. (39)
changes to
Y;+ )\

+ZU,,c, 0, (40)

from which we get
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TABLE II. Coefficients of Halse and our representa-

C =- Z W) Y+ —= Py C (41) tions, with the error with which the experimental areas

of Table II are fitted.
i to be
where X is found to Halse 5 6 a8
== Z(U'l) v,V aV" ) VAV, C4 1.000000 1.000000  1.000000  1.000000
nm "'BC "'"BC BC

nm Cy 4.028 360 0.796434 4,028 360 4,028 360
(42) C; -1.340230 0.212169 -—=1.202660 -—1.340230

The final point is the calculation of the density of
states at the Fermi energy, which is straightfor-
ward once the {C'} coefficients are known. In fact,

we have
2 v 2 9A(k,)
N(E)=(2ﬂ)335=(2ﬂ)3f YAl (43)
and, from Eq. (30),
N(E)=(2+1)gfm* (&) dk, . (44)

(The analogous expression in spherical coordinates
is given in Appendix D.) Since m™* is given by Eq.
(33), the integral in Eq. (44) may be simply eval-
uated simultaneously with Eq. (24). More simply,
however, using Eq. (33) and Eq. (27) we can write

2 y 3V
N(E) _(—ZW:LC"B_Cj , (45)
which gives directly the density of states in terms
of {C'}. In conclusion, we have seen in this sec-
tion how, starting from a set of N experimental
areas and M experimental cyclotron effective
masses, we can derive a set of coefficients {c}
and {C’}, which enables us to get the volume and
the density of states of the Fermi surface, the
area, the cyclotron effective mass, the derivatives
of the area with respect to ., for any orbit, and the
Fermi radii and the Fermi velocities for any point
of the surface. The above scheme, though similar
to that of Halse, has the advantage of compactness,
completeness, and rapid convergence over that of
Halse. ! In particular, for the calculation of the
cyclotron effective masses and of the density of

TABLE I. Experimental and calculated values for the
main extremal dHVA areas expressed in a.u.

Calculated area

Experimental with the R8
Orbit area representation
Bigo 1.2964 1.2964
By 1.2015 1.2008
R 0.5354 0.5353
D 0.5180 0.5180
N 0.0410 0.0410
B[22° in the 1.2571 1.2574
(110) plane]
BJ[16. 2° in the 1.2753 1.2751

(100) plane]

C, —2.528120 —0.013567 =—2.384670 =—2.400300
C; —0.399370 0.046049 =0.357621 —0.233042

Cg ~=0.511763 e —0.391843 =-0.618918

Cq . e . e . o 0.118184

C8 .. DR DY 0‘198816

Er- 0.279% 0.262% 0.205% 0.026%
ror

states, we do not need to pass through the proper-
ties of the surface of energy E+dE, but we use
directly our knowledge of the differential proper-
ties of the Fermi surface. The above scheme will
be applied in Sec. IV to the case of gold.

IV. RESULTS OF THE CALCULATIONS

The values of the areas used in Eq. (17) are
listed in Table I. These seven values were selected
beeause they are extremal with respect to changes
in the direction of the magnetic field and are thus
insensitive to a misalignment of the crystal. For
those areas for which the magnetic field lies along
a symmetry axis (the first five in Table 1) we used
the values obtained by Schirber and O’Sullivan,
since the magnetic field was measured with NMR
and thus the accuracy is expected to be quite high.
The remaining two areas were taken from Halse ¢
(Bs,) and Joseph et al. 12 (B,g) but were corrected
to agree with the value for B,y of Schirber and
O’Sullivan, 28

As discussed in Appendix B, the matrix T re-
sulting from a six-star fit was nearly singular.
This suggests that a good fit can be obtained using
only five stars; Table II lists the coefficients of
the resulting five-star representation R5. Nonethe-
less, the rms error does decrease for fits includ-
ing a larger number of stars, although the coeffi-
cients in Eq. (4) tend to become larger with each
succeeding iteration (a result of the singular char-
acter of T). It was observed that a small rms
error could be obtained while at the same time
avoiding a singular matrix if one or more addition-
al coefficients were held constant [in addition to
C, which is set equal to 1, since we may always
divide Eq. (4) by C,], i.e., by decreasing the size
of the matrix and eliminating a nearly dependent
equation. Table II lists the coefficients of a six-
star representation R6 obtained when C, and C,
were held constant. Shown for comparison is the
six-star representation of Halse. In order to ob-
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tain a nonsingular matrix for an eight-star fit it
proved necessary to keep the values of C;, C,, and
C, constant. The rms error of the various fits is
also listed in Table II. The eight-star representa-
tion R8 is seen to have a very small rms error
and furthermore gives a very good over-all fit to
the data. For this reason we have performed all
our remaining calculations using the eight-star
representation.

The continuous curve in Fig. 1 shows the calcu-
lated angular variation of the dHvA areas for H
varying in the experimental plane (defined as in
Sec. II). The agreement with the experimental
points is quite close. The only discrepancy is the
fact that some experimental points have been ob-
served slightly beyond the direction where, accord-
ing to the representation, the extremal orbits
should cut off. This is a minor point, however,
very likely due to a small inaccuracy in the as-
sumed orientation of our experimental plane; al-
ternatively, it may be due to the finite width of the
“belt” of electrons which contribute to the dHVA
effect. The volume of the surface was found to
contain one electron per atom (within experimental
or calculational error) for all three of our repre-
sentations. This verifies the assumption that the
volume of the Fermi surface is not affected by
many-body interactions; this assumption is cen-
tral to Fermi-liquid theory. (Fits made with the
volume constraint give negligibly different results.)
The above calculation provides also the coefficients
aA/ac,. of the areas for which the cyclotron effec-
tive masses have been studied; the mass inversion,
through Eq. (39), is therefore straightforward.

TABLE III. Coefficients C; as obtained in the R8 rep-
resentation, without and with the constraint on the value
of the density of state.

(a) (b)
Without constraint With constraint

Cc{ 0.0 0.0
Cy 0.0 0.0
Cq —82.4586 25.8263
Cy —170.8485 59.6772
(o4 —16.8915 49,1934
Cq —14.7248 45,8113
Cq 12.1088 51,2581
Cg 6.958 52 18.3477

The only problem is the choice of the set of masses
to be fitted, which has some arbitrariness; one
could, of course, take all the experimental data
and get the best fit to all of them. But, in view of
the very different accuracy of the results for the
different regions of the Fermi surface, some sort
of weighting would have to be introduced. We have
preferred to weight equally all points used in the
fit, and to eliminate entirely the less reliable val-
ues. The circled dots in Fig. 2 are the values se-
lected for the fit. For the set of {C'} coefficients
so determined, the angular variation of the cyclo-
tron effective mass m™* in the experimental plane
has also been plotted in Fig. 2. The inversion
procedure has been performed both with and with-
out the constraint that the density of states, calcu-
lated through Eq. (45), be equal to the experimental
value deduced from specific-heat measurements. 3

1.35 T
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1.25 (—
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020 FIG. 3. Angular variation of the dHVA
areas (in a.u.) inthe (100) and (110) planes.

| The continuous curve is calculated in the

| R8 representation; also shown for com-
parison are the experimental data of

Joseph et al. (Ref. 12) (dots) and Halse
(Ref. 16) (open circles). (Note the different
scales for Ag, Ap, Ap, and Ay.)
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The techniques for performing the volume and den- straint. Note that the first two coefficients have
sity-of-states integrations are discussed in Appen- been set equal to 0. The first coefficient was
dix D. The two resulting curves (dashed and con- equated to 0, because a surface at E + AE can also
tinuous, respectively) are shown in Fig. 2. Table be described by C,(E + AE) =1 which results in
III lists the expansion coefficients for the eight-star C{ (E)=0. The second was set equal to 0 because
fits with and without the density-of-states con- a nearly singular matrix U results otherwise. The
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LO®;- FIG. 5. Angular variation of
D the cyclotron effective masses (in
o electron masses) in the (100) and
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08— curve is calculated in the R8 rep-
m* resentation with the {C’} coeffi-
cients of Table III without the den-
- sity-of-states constraint. Also
shown for comparison are the ex-
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constraint on the density of states is justified by I P ' '
the Landau theory of a Fermi liquid which predicts
that the effect of the many-body interactions are

taken into account by a renormalization of the ef-
fective mass. From a knowledge of the variation
of the cyclotron effective mass over the Fermi
surface, one can derive the density of states
through Eq. (44), and one has, in principle, a way
to test the above conclusion. For the fit of Fig. 2,
the density of states calculated without constraint
is lower by 0. 8% than that corresponding to the
experimental value of Martin. ** In view of the
large inaccuracy of our results in the B,,, region,
and of the fact that the belly electrons are just
those which most heavily contribute to the density
of states, we must conclude that, within the limit
of the experimental error, the two values coincide.
In the calculations which follow, the density-of-
states constraint has not been included. Thus, we
are taking the point of view that our measurements
provide an independent determination of the elec-
tronic heat capacity of Au. Since errors of order
1% are not uncommon in heat-capacity work this
may be a reasonable point of view. We find the
value y=163.78 pcal K2 mole™,

With the representation for the Fermi radius
and Fermi velocity reported above, we have done

A

------- |oa ok,

I —-—-m* IANNE'

ELECTRON ORBITS

loasaky|

o Y SV S—— T
r ky[10] K
FIG. 7. Areas, 8A/0k,, and m *as a function of &, in the
[110] direction. (Scale of the ordinate is in atomic and
electron mass units; that of the abscissa in units such
that the distance I — X in the Brillouin zone is equal to 1.)
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an extensive study of various quantities of experi-
mental interest. Part of the results are shown in
Figs. 3-9. Figure 3 shows the calculated angular
variation of the dHVA areas as f varies in the
(100) and (110) planes. A portion of the available
experimental data are also shown in Fig. 3. The
data of Joseph et al. have been corrected to agree
with the NMR measured values of Schirber and
O’Sullivan at the symmetry direction. For H near

[100] in the (110) plane, there is a considerable
difference between the result of Halse and those

of Joseph et al. Halse has argued that this must
be due to a sample misorientation in the work of
Joseph ei al. since the belly area must be an ab-
solute minimum for A near the minimum at 22°
from [100]. A point to be noted is that the rosette
orbit, for the directions of the field out of the (110)
plane, is not necessarily centered at W; this point

Ver ke

_FIG. 9. Angular dependence of I¥zl,
lkp*vgl, and |kp| for the (100) and (110)
planes. (Scale on the ordinate is in units
such that the distance T — X in the Brillouin
DN zone is equal to 1.)
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75°
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has been discussed elsewhere, ! and must be ac-
counted for in calculating the theoretical curve.

Figure 4 shows the angular variation of
[824/8k2]7V2, for the dHVA areas with A in the
(110) and (100) planes. This quantity appears in
the expression for the amplitude of the dHVA os-
cillations [see Eq. (2)]; no comparison with experi-
mental values is possible at present, since these
measurements, which are very difficult, are still
in a preliminary stage.?® A striking feature of
Fig. 4 is the vanishing of 824 /82 near [111]; this
is discussed in Appendix C.

Figure 5 reports the angular variation of the
cyclotron effective mass in the planes (100) and
(110), as calculated from the set of coefficients
in Table ITI(a). Also reported in the figure are
the experimental results presently available, 1012
Good agreement is found in the neck region, where-
as in the other regions the data are too inaccurate
or incomplete to allow a meaningful comparison.
Figures 6-8 give the variation of the area, the
derivative of the area with respect to %&,, and the
cyclotron effective mass, as a function of %2,, for
k, in the [100], [110], and [111] directions, respec-
tively. Note in the [110] direction (Fig. 7) and in
the [111] direction (Fig. 8), the prediction of a
“lemon” orbit, and of a “six-cornered rosette”
orbit, analogous to those found by Halse for Cu.
We have been unable to find the six-cornered ro-
sette experimentally; since it is nearly twice the
By;, area it is probably obscured by the belly sec-
ond harmonic. We are not aware of any experi-
mental measurements of extreme values of 34/ak,
in gold although our results are qualitatively sim-
ilar to those in copper, where experimental data
do exist. % The variation with %, of the cyclotron
effective mass also has some interest; according
to our calculations the cyclotron effective mass
has several extremal values, in addition to those
related to the extremal dHvA areas. Since in cy-
clotron resonance experiments extremal masses
are observed, the presence of these subsidiary ex-
tremals may complicate the interpretation of the
experiments; it may be that in many cases it is
difficult to resolve the different values, which are
predicted to be rather close. In any case, it does
not seem that this aspect of the problem has been
taken into account so far in the interpretation of
the Asbel-Kaner cyclotron resonance (AKCR) re-
sults. In Fig. 9 is reported the Fermi velocity,
without the density-of-states constraint, along the
intersection of the surface with the (100) and (110)
planes. The anisotropy of the Fermi velocity is
qualitatively analogous to that found for the other
noble metals. '®

V. CONCLUSIONS

We have developed and applied here some im-
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proved methods for obtaining Fermi radii and
Fermi velocities from dHvA areas and cyclotron
effective masses based on Fourier-series repre-
sentations. An eight-term series is found to give
an exceptionally good fit to the available dHVA areas
and thus should give an accurate representation of
the shape of the Fermi surface. The volume of the
surface obtained contains one conduction electron
per atom within experimental error. A second
eight-term expansion is obtained which when com-
bined with the first expansion gives a good over-
all fit to the available cyclotron effective-mass
data and thus yields a representation of the Fermi
velocity. The resulting density of states is found
to agree with the value obtained in electronic spe-
cific-heat measurements within experimental er-
ror. This result is in agreement with present
many-body theory which predicts that the total
density of states (measured by the electronic heat
capacity) and the quasiparticle density of states
(computed using the cyclotron mass) should be
identical.
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APPENDIX A

For some purposes it may be useful to develop
a single function E(k) from which both the Fermi
radius and Fermi velocity may be deduced. The
Fermi surface follows from the solution of E(K)
= Ep (where E is arbitrary) and the Fermi veloc-
ity is given by V=V, E(K). We now describe a pro-
cedure for finding E(K) from a set of measured

dHvA areas and effective masses. We again de-
fine E(K) by

ER)=2,C,S, (&), (A1)
and note that 3A° /8F is given by

; 2r 2

DAC . f R

= —= . A2
9E )y Kk,-VE (a2

We employ the following more general error func-
tion:

1- 1-x Af-A X 9A{ oA
A2 i~ A4 ___L _L
N ,Z,;I ( A > Z aE aE ’

(A3)
where N and M are the number of experimental
areas and effective masses, respectively, and x
is a weighting factor which accounts for the fact
that the effective-mass data usually have less ac-
curacy (x =0 would correspond to zero statistical
weight for the mass data). We require the follow-
ing expansions:
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A;({c+och = A°({C})+Z c. 90, (a9 Z[(aA? %)/(th)z] 8% Af (A9)
8E OE 8E 39C,;8E ’
0AS 824
({c 6C}) = _L({c}) Zac 55 9Cs , (A5) , lox 1 247 2AS
n= N A7 ac, aC,
where
8A 2g, (k) x5 (084; \? _8%A;] %43
= LG ——t i A
aC, J; (k,- VE) ., (46) M,Z( aE) 8C,9E 8C, 8E (A10)

LS, (K)k,- VVE-K,
(k,-vVE)?

I S, (k)
(k,- VE?

82.4 j‘Zr
9C,8E Jo (

Kk, VS, (k)

T )de. (A7)

Inserting Eqs. (A4) and (A5) in Eq. (A3) and mini-
mizing with respect to 6C; we obtain

X;42., T, 6C; =0, (A8)
where
X, 1- x5~ Af— A, 24§

N TA

2yc o
)\1‘—(8 V..'T-l'
3EaC

aC,
|

C 2y7¢ —
o= -(a—‘;-T-I.%)(w— V- 2. T
2 aC

2 C - ¢
2 V..)<V°— Vo-a—V..—-T‘l-x>—<3—‘f:.T
9E 8C aC aC
<8V° T avc)( a%ve ey 32ye )_(avc;r,_] o2ye >z ,
oC "~ ~ " aC/\8EaC 8E8C aC "8E8C

- € — c c
x)+(aV 5, 2V )(aV _3V,

If we wish to include the number of carriers and
density-of-states constraints

ve{c+sch zve ({c})+Z oc,-vo, (A11)
Lavedceh 82ye 3V,
({C och= oE ‘,Zac,aE 8C;= 9E °’
(A12)
then Eq. (A8) becomes
av*® 9¢vye
X+ A o °C, +Ag e 5CoF +Z T, 8C, = (A13)

Requiring that Eqs. (A11) and (A12) be satisfied we
find the following for x; and »,:

0%V

9%V e av° A - =
. 27 ——.T1.X
dEaC/\ 8aE ~ aE 9E oC

mT-1

J

2 —_ .
__a_l;. T".X) /
dEaC

Ve =, oV°e\[ 8%V°® =
.T 1. )( . T
[:(83 aC /\sEaC

APPENDIX B

In attempting to improve Halse’s six-star fit for
Au it was observed that the resulting matrix 7 was
quite singular (here we did not vary C, so the ma-
trix was really a 5X5). Since a singular matrix
implies that at least one of the equations is linearly
dependent we conclude that an equally good fit can
be had using only a five-star fit. To test this point
we developed a program for performing a least-
squares fit to a set of radii; this program is, in
effect, a simplification of the corresponding one
described in Sec. III for fitting areas. We calcu-
lated 40 radii, in the basic Jf5th of the unit sphere,
using the Halse coefficients. We then performed
a least-squares fit to these radii holding C4 con-
stant while varying C, through C; until A% mini-
mized. Figure 10 shows the rms error A as a

a4, 8%V° )_ (a
3E 8C aC

aC aC 9E 9E
C e 2y7c 2
l—-T-l.iL) ) (A15)
9E8C

function of Cg; shown also are the coefficients C,
through C;. We observe that C, through C; are
nearly linearly dependent on Cq and that A rises
to ~0. 1% on setting C4 equal to 0. With the limited
set of accurate area data (i.e., points measured
where the area is an extremum as a function of

the magnetic field direction) we do not have suffi-
cient sensitivity to determine Cq and thus we have
set it equal to 0. A nearly singular matrix was
also encountered when we attempted to obtain a
better fit by extending the expansion to include Cq
or Cg in the fit (still setting C4=0). To demon-
strate that the Halse fits for Cu and Ag do not dif-
fer substantially from those of Au we have shown
his values of C, through Cg4 for Cu, Ag, and Au in
Fig. 10; observe that they fall quite close tothe Au
coefficient contours. This situation is expected
since the Cu, Ag, and Ausurfaces are quite similar.
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APPENDIX C

A striking feature of Fig. 4 is the vanishing of
8%A/dk% near [111]. This would seemingly imply
through Eq. (2) an infinite amplitude for the dHvA
oscillations. This anomaly is caused by the par-
ticular expansion used to calculate the dHVA ampli-
tude; higher-order terms become important in the
limit as 824 /dk? approaches 0 and Eq. (2) is no
longer valid.

The dHVA amplitude is calculated by assuming
that the Fermi surface is divided into slices of
thickness dk, by planes normal to the magnetic
field direction E,,. Then each slice will contribute
a component to the oscillatory magnetization with
a frequency characteristic of the value of the cross-
sectional area of the Fermi surface in the plane of
the slice:

M(k,) = A sin[27F(k,)/H] . (cy
Then the resultant magnetization will be given by
M= Af sin[27F (&) /H]dk, . (c2)

Since the phase of the oscillations is usually very
high this integral does not converge unless F(k,)
has a stationary nonzero value for some k,. Mea-
suring %, from this point we can expand F(%,) in
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a Taylor series:

18%F 1 8'F

10°F , 18°F
6 ok% F1* 3 578 ki

F(r,) = F(0)+2Wkﬁ+ (c3)

In the usual case only the first term in the expan-
sion is retained, leading to

~ [ .. 27F(0) 7 8%F ,
M—Af [sm T cos<Hﬁﬁ-k..

-c

21F(0) . ( 7 8°F
" ol

)]

_AHY% | 8°F ‘lfzsm<21rF(o) L nazA (ca)
T2 |2 " 2%y )

However, if 82F/ok2 vanishes then the next term
in the expansion must be used in the integral of
Eq. (C2). For stationary frequencies associated
with planes of high symmetry only even orders of

k7 can appear in Eq. (C3) and so the leading term

will be the » =4 term. For this case, we have

1 . 2nF(0) < T o'F 4)
M—A/-; [sm I cos IZHBE‘,-k“

os ZTrF(O) ( 7 8'F £t >]dk,.

H 12H ok
A 12H 1/4 34F -1/4 T 4A
) (T> ok} ( 'é ak..>'
(CH)

Equation (C5) has three important differences from
Eq. (C4). First, the amplitude is determined by
8*F/ak% rather than 82F/0k2. Second, the magnetic
field dependence of the dHVA amplitude is different
in the two cases. Dingle-Robinson temperatures
are derived from the field dependence of the dHvA
amplitude and care must be used when applying the
usual formulas in regions where 92F/a%2 is small.
Third, the dHvA phase correction is different for
the two cases.

Finally, there may be rare cases when the lead-
ing term in the expansion (C3) is the » =3 term.
This would correspond to a stationary value of the
frequency rather than an extremum. In that case
the dHVA amplitude is given by

3H \3 / 3F \1/3 L T . (217F(0))
A( w) (W) r‘(s)cos-é sin T .

(ce)
Note in this case the different magnetic field depen-
dence of the amplitude and the absence of the dHvA
phase correction.

APPENDIX D

Here, we discuss very briefly the techniques
used to perform the volume and density-of-states
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calculations. Rather than Egs. (24), (27), and
(48), which are given in cylindrical coordinates,
the actual calculations were performed in spherical
coordinates. The analogous expressions in spher-
ical coordinates are

v=4/Fsinodody , (DY)
9V kz
3¢, ) 7% S,(k)sme dode , (D2)
av_[ K
~=— sinfdbdy ,
3£ ) o5 ¥ (D3)

where &k, 6, and ¢ are the usual spherical coordi-
nates. The integrations were confined to the basic
#ith wedge &, >k,>k,. For maximum accuracy the
integrations were performed using Simpson’s rule
doing the # sums first followed by the sum over ¢
(the integration initiated at the intersection of the
neck and the L plane with ¢ =45°). In the course
of carrying out these sums two procedures are re-
quired. When we are on the intersection of the
neck with the L plane we need a routine to advance
along the neck to a specified angle ¢. The simul-
taneous solution of the following three equations
yields a vector ok by which we correct k to con-
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verge to the neck and the desired value of ¢:
F(k+8k)=F(K)+VF-8k=0, (D4a)
ne (k+0k) =kry, , (D4b)
(kK + 6K)- X tang = (K + 6K) - 5 (D4c)

where 7 is a unit vector in the [111] direction and
krp is the distance from T to L. When we are not
on the neck intersection we require a routine to
advance to a specified value of § and ¢. The solu-
tion of the following three equations yields a value
of 6k by which we correct k to converge on the de-
sired values of 6 and ¢:

F(k+6k)2F(k)+ VF-6k=0, (D5a)
(kK+ 6K)- y =tang(k + 6k)- %, (D5b)
(k +6K) - 5 = tang sinp(k + 6k) 3 . (D5c)

The values of 6 and ¢ which lie on the &, =%, corner
of the wedge are related by sing sing =cosf. In ad-
dition to integrating over the values of § and ¢ which
lie on the surface, the volume integral must include
the volume enclosed by the intersection of the sur-
face with the L plane. This contribution is easily
seen to be given by 3+ A k., .
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